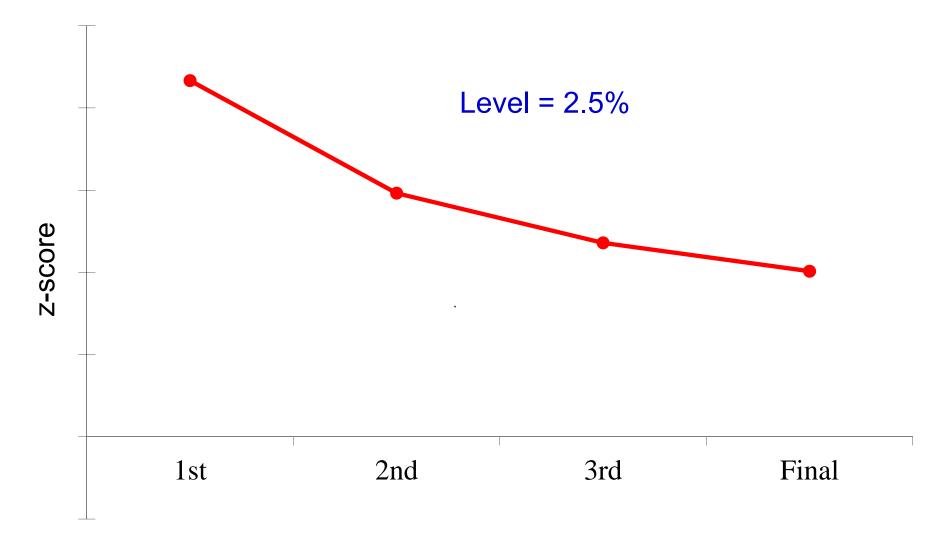
Viewpoints on Setting Clinical Trial Futility Criteria

Vivian H. Shih, AstraZeneca LP Paul Gallo, Novartis Pharmaceuticals

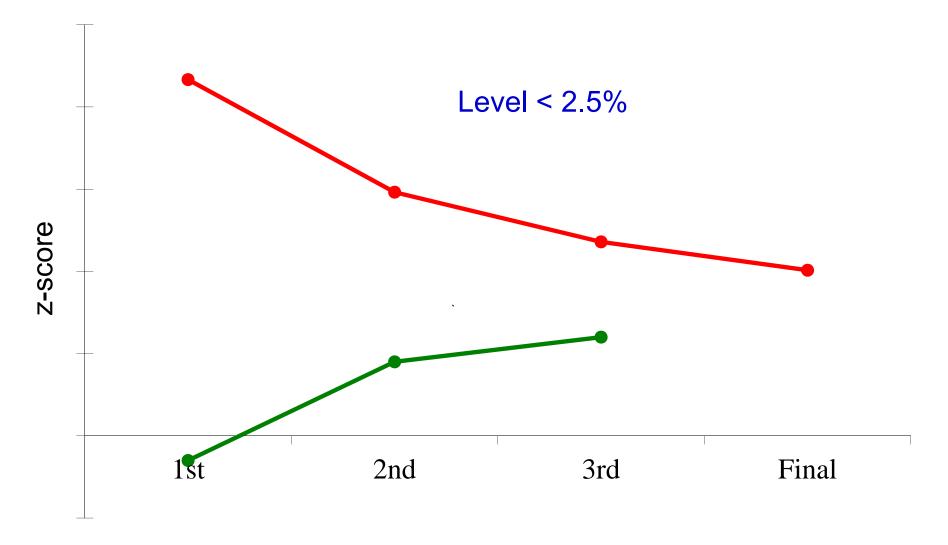
> BASS XXI November 3, 2014

UNOVARTIS

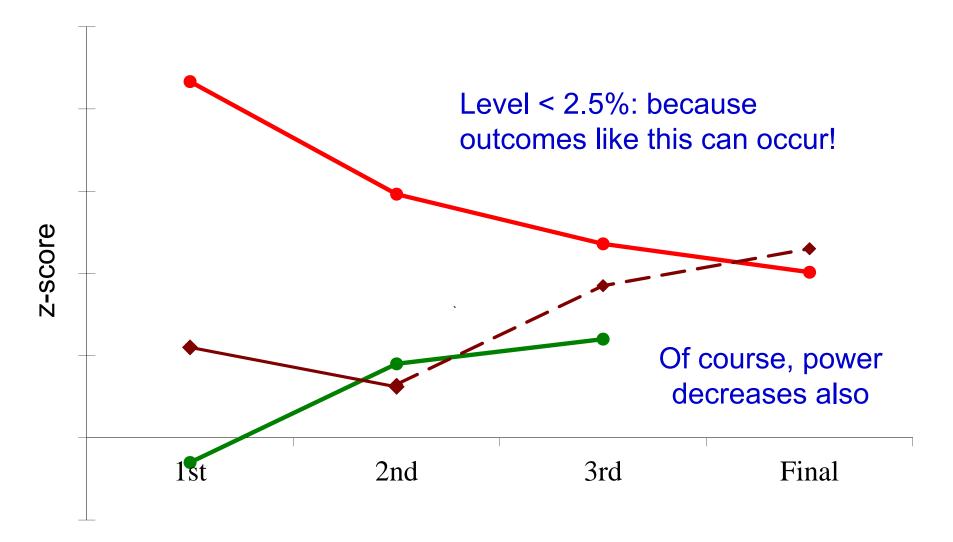
Reference

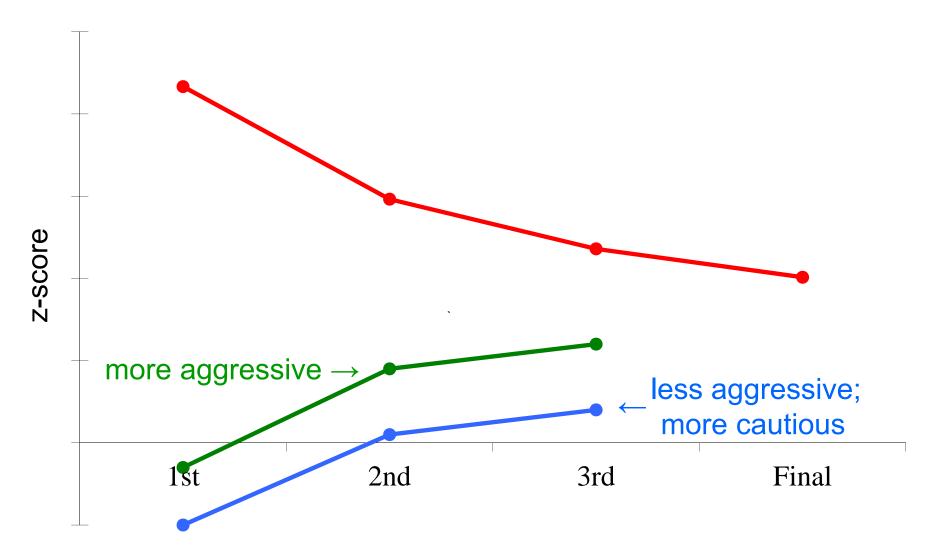

Based on:

Gallo P, Mao L, Shih VH (2014). Alternative views on setting clinical trial futility criteria. *Journal of Biopharmaceutical Statistics*, 24(5):976-993.


Stopping Trials for Lack of Effect

- Futility: based on interim results, a trial seems unlikely to achieve its objectives
- Specific motivations for allowing the possibility of early stopping are situation-dependent, but generally obvious
 - Time
 - Cost
 - Ethics
 - Resource reallocation


Typical Efficacy Scheme


Impose a Futility Boundary

Level is Decreased

Terminology – "Aggressiveness"

Assumptions

Non-binding futility boundary

- i.e., we don't modify success criteria to *buy back* lost α
- consistent with an understanding that futility is a "soft" decision (*guidelines*, not *rules*)
- We'll compare schemes in terms of *power loss*
 - Another option: *increase SS* to regain lost power
- No early stopping for efficacy
- Notation:
 - Δ = hypothesized design effect, *d* = point estimate
 - I = information time, Z_I = corresponding test stat

Tools for Addressing Futility

- Conditional power (CP) calculations
 - usually conditions on the original study alternative
 - sometimes on other quantities (e.g. point estimate)
- Predictive probability (PP)
 - usually non-informative prior
- Beta-spending functions
 - describes cumulative Type II error across the interim and final looks
- \rightarrow Others (B-value, stochastic curtailment, reject H_A)

Which Approach to Use?

- Discussions of the relative merits of the different approaches often seem to focus on philosophical grounds
 - e.g. the assumptions seemingly being made
 - the degree to which quantities might be interpreted as chances of success
 - are they really?
- What's the real issue?
 - Emerson et al (2005): operating characteristics

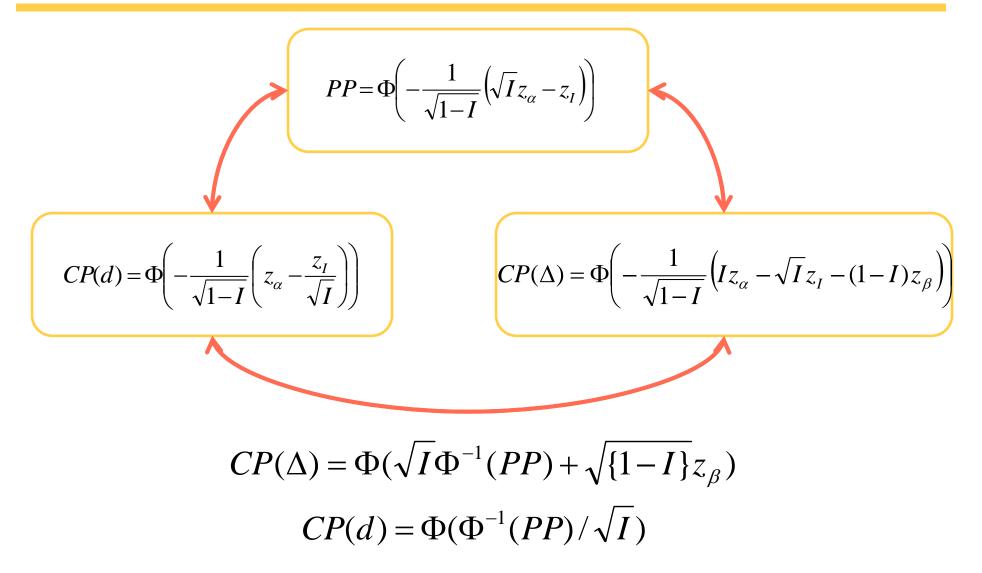
Consultation Examples

- Two actual proposals / consultations for futility criteria:
 - 1. With 20% of data available, conditional power assuming the original Δ must be at least 5%
 - At ²/₃ information, the conditional power computed assuming that the observed effect is the true effect is at least 70%

Possible Scenarios

	Trial outcome / True state of nature			
Interim decision	Success	Failure		
Stop for futility	(Incorrect)	(Correct)		
Continue	Correct	Incorrect		

- Generally, we'd like "small" chances of outcomes on the diagonal
 - but of course decreasing one increases the other . . .


Striking a Balance

- We can't control error rates nearly as well as we typically do for an entire study
- Stopping when we should versus {continuing when we should} are always in conflict
- We should aim to strike an appropriate balance while limiting the chance of wrong decisions
- Proposal: usually, the worse transgression is stopping a trial which would have been successful

Relationship Between Criteria

- At a given time point, a futility rule expressed on any particular scale can be transformed to any other
- For example, in a 2.5% level, 90% power trial, with a single look at I = 50%, say we set a criterion of PP = 20%
- The same rule can be expressed as:
 - CP = 62%
 - CP(d) = 12%
 - Beta spent' = 6.7%
- Question: is the scale on which we express a futility criterion really that important?

Interrelationships

90% Power for Δ , **I** = 0.5

Z-score	d / Δ	CΡ(Δ)	CP(d)	РР	Power loss	Stop under H₀
No stopping	-	-	-	-	0	0
0	0	32%	<1%	3%	0.2%	50%
0.25	0.11	41%	1%	5%	0.6%	60%
0.50	0.22	51%	4%	11%	1.3%	69%
0.75	0.33	61%	10%	18%	2.7%	77%
1.00	0.44	70%	22%	29%	5.1%	84%
scales for expressing futility rule					behavior	

Aggressiveness / Caution

- We need not focus only on H₀, H_{A;} other definitions of weak effect, likely success, etc. could be considered and evaluated}
- How much

risk of stopping when we shouldn't

are we willing to pay to buy a desired amount of chance of stopping when we should ?

Incorporate into a loss function?

How Aggressive?

- What are the dimensions of savings of interest?
 - e.g., \$, resources, time, patients, etc.?
- What factors affect the trade-offs?
 - fixed vs variable costs
 - prior belief: how much faith? / evidence from related trials
 - *ethics:* unknown safety risks for experimental treatment
 - upside: blockbuster, or "me too"?

When to Evaluate Futility?

Again, a conflict :

- stopping earlier yields potentially greater savings; but . . .
- less ability to distinguish between scenarios which should / should not justify continuing

Futility behavior improves with information in 2 ways:

- added precision from more data
- less data still to come that can overturn a poor trend
- Previous example, criteria: z = 0.5
 - at $I = \frac{1}{2}$, we saw that power loss was 1.3%
 - at I = ¼, it's 9.2%

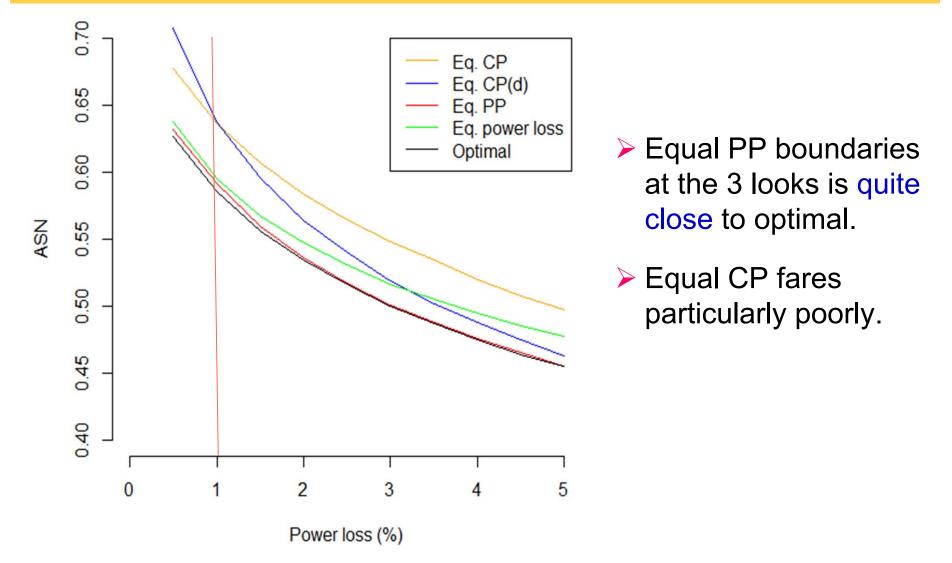
Multiple Futility Looks

Why not?

- i.e., in long-term studies
- There are practical limitations (on both ends) to when looks should take place
 - too early, too late: *no point*
- The existence of a later look might impact the choice of criteria at a prior look
 - because a decision to continue does not commit to trial completion, but only to proceed until a later point where data is more mature

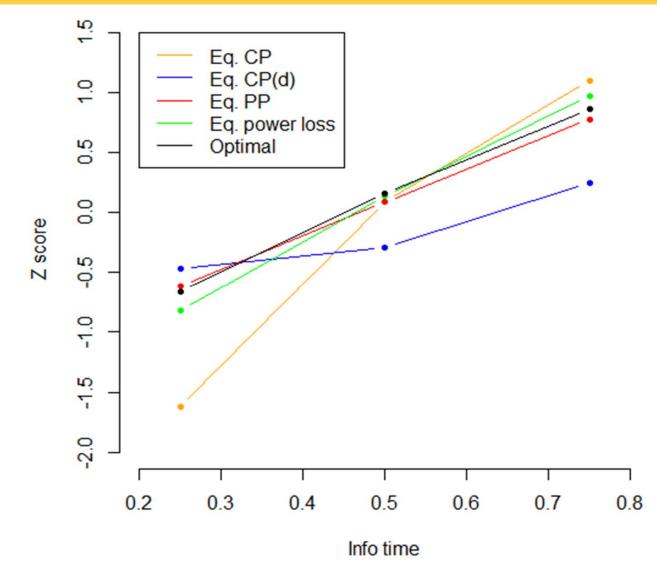
Quantifying the Trade-offs

- How to extend to multiple looks?
- The cost of incorrect stopping:
 - how about "power loss across the whole scheme"?
 - of course, different ways to achieve this.
 - perhaps, equal power loss at each analysis?
- The benefit of correct stopping:
 - ASN: average sample size under H₀


Multiple-look Considerations

- Ideally, we could describe a scheme simply
- Now the scale matters!
 - equal criteria across looks on one scale could be very unequal on another scale
- Example: say that at I = ½, we judge CP = 50% to be a sensible criterion
 - What if we also used the same rule at $I = \frac{1}{4}, \frac{3}{4}$?
 - PP across the 3 looks: 1.3%, 10.0%, 23.0%
 - But is there any reason to expect that the same CP threshold behaves well at the other timepoints?
 - *hint*: it doesn't . . .

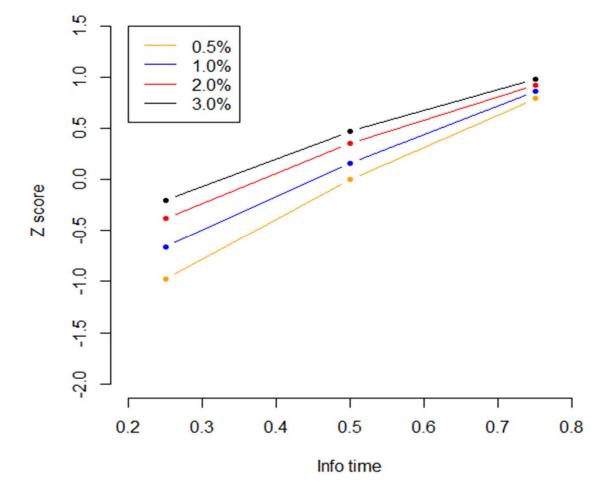
Optimality


- Optimal boundaries: For a given schedule of analyses, and a specified amount of power loss, we can define boundaries that minimize ASN
 - optimization done by grid search
- In what follows, we'll assume 3 looks at I = 0.25, 0.50, 0.75, and describe various boundaries:
 - equal CP
 - equal CP(d)
 - equal PP
 - equal power loss
 - optimal (as above)

ASN vs Power Loss

24 BASS XXI | Viewpoints on Setting Clinical Trial Futility Criteria | V. Shih and P. Gallo | November 3, 2014

Comparing Boundaries: 1% Power Loss



1% Power Loss Boundaries

			Futility boundary on Z-scale			
Boundary type	Common value	ASN	1 st look	2 nd look	3 rd look	
Equal CP	0.347	0.636	-1.622	0.087	1.101	
Equal CP(<i>d</i>)	0.0004	0.637	-0.472	-0.291	0.245	
Equal PP	0.033	0.590	-0.612	0.086	0.780	
Equal power loss	0.0033	0.595	-0.819	0.138	0.972	
Optimal	-	0.585	-0.660	0.160	0.860	

What do "Good" Boundaries Look Like?

Optimal boundaries for various amounts of power loss:

What do "Good" Boundaries Look Like?

- Interim results should not be expected to predict well the final study results !!
- > Personal viewpoint:
 - {power loss 1 2% ?}
 - early in a study, correspond to negative outcomes
 - cross into positive territory somewhere towards the middle of the trial
 - never correspond to highly favorable outcomes

Message

- My experience: trial teams encouraged by the knowledge that their study proceeded beyond a futility analysis, and then disappointed
- The proper interpretation of continuation beyond a futility evaluation is:
 - not that the trial is likely to succeed
 - but rather, that it has a chance to succeed
 - or else we would stop too many trials that turn out to be successful

Back to (Flawed) Consultation Examples

- "When 20% of the data is available, continue the trial as long as the conditional power (assuming the original Δ), is at least 5%"
- > This would correspond to z = -4.6
- \succ Basically impossible to reach even under H₀
- A substantial signal of harm

Consultation Example

- "½ into the trial, continue the study only if the conditional chance of success, computed under the assumption that the observed effect is the true effect, is at least 70%"
- As stated, this must correspond to an observed effect greater than the value that would be significant at the end of the trial

Conclusion

- A futility scheme should be implemented with careful consideration of its motivation and objectives, and quantification of relative costs and trade-offs
- Familiar expression scales can be a useful device for describing criteria, but are not a substitute for sound investigation of operating characteristics
- Predictive probability seems to have some benefits in terms of easy description of a scheme which might have desirable properties
- Sensible futility criteria often correspond to quite poor observed outcomes, and it is important that trial personnel understand this